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Abstract

A time domain technique for matching response predictions of a structural

dynamic model to test measurements is developed. Significance is attached to

prior estimates of physical model parameters and to experimental data. The

Bayesian estimation procedure allows confidence levels in predicted physical

and modal parameters to be obtained. Structural optimization procedures

are employed to minimize an error functional with physical model parameters

describing the finite element model as design variables.The number of complete

FEM analyses are reduced using approximation concepts, including the recently

developed convoluted Taylor series approach. The error function is represented

in closed form by converting free decay test data to a time series model using

Prony's method. The technique is demonstrated on simulated response of a

simple truss structure.
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1 Introduction

This work is motivated by the need to have at hand accurate structural dynamic

models for the design of robust vibration suppression control systems. Knowledge

of modal properties is of course necessary for control system design. Possession of

an accurate physical model of the structure can also be beneficial. Such an instance

is when one anticipates making modifications to the structure to incorporate control

actuators in primary load paths for the purpose of reducing dynamic response. The

physical model will allow one to predict the new modal properties of the perturbed

structure. A modal model alone or even a mass and stiffness representation would

not allow this.

A second motivation is the possibility of performing "on-orbit" structural sys-

tem identification where the only test equipment available is the control system

actuators and sensors. The number of sensors will necessarily be limited, nowhere

near the scores or hundreds of acceierometers which are commonly used to saturate

modal survey test articles. A prior structural model can provide valuable informa-

tion which may then be supplemented by data acqulreo...... irom um conuo,' system to

provide response predictions more accurate than available from either analysis or

test alone.

A beneficial side effect of the Bayesian parameter estimation approach is the

availability of uncertainty estimates on both physical parameters and modal quan-

tities such as frequencies and mode shapes. Variances on derived response quantities

such as gain factors may also be obtained. These statistical estimates provide mean

values and ranges which may be used to design the control system and test it for

stability and robustness across the range of possible physical and modal parameter

values.

1.1 Background

Previous work at TRW on system identification for the design of vibration sup-

pression control systems has focused on the Maximum Likelihood approach. In the

Maximum Likelihood approach no weight is given to prior parameter estimates nor

is uncertainty assigned to the measurement data. Model parameters are adjusted

so as to best fit the experimental data. This estimation procedure has been ap-

plied in the frequency domain to a flat plate experiment [1] and in the time domain

to the Large Space Structure Truss Experiment (LSSTE) [2]. As applied in the

time domain, the test article was excited by the control actuators using a fast sine

sweep or "chirp" across the frequency range of interest. Motion was then allowed

to decay. Physical parameter estimation was implemented by minimizing the error
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residual between observed and predicted response at the control sensors. This er-

ror residual was defined as the integral over the duration of the test, both forced

and unforced, of the square of the difference between measured and predicted re-

sponse. As reported, the perturbation of physical parameters allowed the accurate

matching of response in amplitude, frequency and phase over the duration of the

experiment. The structural model was a set of discrete equations of motion and was

not represented directly in the estimation procedure as a finite element model. The

parameters which could be identified were as a result limited to inertia properties

of the top plate, the modulus of elasticity and modal damping ratios.

Recent advances in the state of the practice of structural optimization techniques

make it possible to consider the extension of physical parameter estimation to finite

element models of at least moderate size. In particular, linking MSC/NASTRAN

Design Sensitivity Analysis [3! with the Automated Design Synthesis (ADS) code

[41 has enabled structural optimization to proceed on a production basis. Approx-

imation concepts [5, 6] have allowed the reduction of the number of full structural

analyses required for a model optimization to single digit levels. At TRW, structural

models having up to 10,000 static and 400 dynamic degrees of freedom have been

weight-optimized with minimum frequency constraints using up to 200 design vari-

ables. The availability of eigenvector derivatives [7] has enabled the prediction and

minimization of vibratory response using the approximation concepts approach [8].

Physical parameter identification can be implemented using these proven methods

by employing uncertain parameters as design variables and minimizing an appro-

priate error functional.

]t was found in Reference 2 that a significant portion of the computation time

was spent integrating the equations of motion for each trial design and for each

perturbed design required for finite difference gradient calculations. A closed form

representation for the error functional would increase the computational efficiency of

the estimation process while enhancing numerical stability. Recognizing that linear

models predict free decay response as a sum of exponentially damped sinusoids and

that one can extract these same components from free decay test data employing

Prony's method, such a closed form error functional has now been derived. The prior

filtering of the test data using Prony's method has the advantage that frequency,

mode shape and damping data are available to some extent and may be compared

to prior model predictions even before the estimation procedure formally begins.

1.2 System Identification Methods

The system identification field is vast and the options one encounters in choosing an

approach are numerous. Perhaps the greatest advantage of the approach adopted
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herein is its ability to go directly from test data to an improved analytical model.

This approach is by no means advocated as superior in all respects to others. It is

one more tentative step in the direction of physical parameter identification and, in

fact, some valuable lessons have been learned in its implementation. Some discussion

of where this approach falls in the larger framework of system identification is in
order.

The common starting point for system identification and model verification for

most aerospace structures is the modal survey. This procedure is used to determine

the system's normal modes, frequencies and modal damping ratios. This effort is

undertaken independent of any prior knowledge of the model other than in the

selection of instrumentation type and location and choice of modal identification

procedure. Numerous modal identification techniques are available in either the

frequency or the time domain [9]. Having a set of test modes, these are frequently

corrected to enforce orthogonality to an analytic mass matrix using a technique such

as Gram-Schmidt orthogonalization, or the Targoff method [10]. In this approach

the analytic mass matrix is assumed perfect and the corrected modes are taken as

linear combinations of test modes.

A procedure which might be labelled the Baruch-Berman method [11, 12! may

also be employed to generate an improved analytic stiffness and mass matrix which

exactly reproduces the measured mode shapes and frequencies while producing min-

imal changes to the analytic model in a weighted least squares sense. This procedure

has been applied numerous times with considerable success. The predicted changes

to the analytic mass and stiffness matrices have been used to guide the improve-

ment of the physical finite element model in a heuristic manner. One criticism of

the Baruch-Berman method is the generation of stiffness matrices with coupling

between degrees of freedom which appear to be physically unconnected. Unrealistic

mass changes have also been observed. Although the method generates a mass and

stiffness model which generates the test modes, additional modes within the test

bandwidth can also arise from the model.

A promising answer to the infeasible coupling problem has been provided by

Kabe i13]. Assuming the test modes have been orthogonalized to the analytic mass

matrix, an improved stiffness matrix is formed which preserves the topology of and

minimizes the perturbation to the original analytic matrix, while exactly matching

the test frequencies and modes supplied to the algorithm. The technique has not

seen application in practice due to very large computational requirements.

Having in one's possession an improved stiffness and mass representation of a

structure is not in all cases sufficient to allow the analysis process to proceed. In

many cases the test configuration is not the field configuration. The structure in
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question may be altered or coupled to other components, which would make a test

verified physical finite element model valuable. The Bayesian technique [14, 15] is a

general framework which allows one to match the analytic predictions of a model to

test data while minimizing the changes to the original model. Uncertainties in the

form of standard deviations may be assigned to one's original parameter estimates

and to the measurement data. The resulting set of revised parameters will be

provided with a statistical estimate of confidence given the additional knowledge

provided by the test. The changes in estimated parameters vis-a-vis the original

estimates can be used to infer the adequacy of the test and or the functional form

of the analytic representation [16]. This method has been applied successfully to

estimate a small bi-linear model using transient test data [17]. It is the intent of

this work to extend the Bayesian technique in an efficient manner to finite element

model estimation.
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2 Estimation Procedure

An overview of the estimation procedure is given in the flow chart of Figure 1.

The process consists of: 1) Test; 2) Prony analysis; 3) Finite Element Analysis;

4) Construction of an approximate problem; 5) Optimization; and 6) Bayesian

statistical analysis. Steps 3-5 are repeated iteratively until the approximate problem

converges to closely resemble the actual problem.
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Figure 1: Parameter Estimation Using Structural Optimization Techniques

The test portion of the structural parameter estimation procedure is imple-

mented by subjecting the test article to a series of force load events {Fk(t)}, k =

1,..., Nzc using combinations of control actuators. Free decay time histories u_k(t),
j = 1,...,N,; k = 1,...,Nlc are measured at each of the No control sensors in

each of the Nl_ load conditions. This experimental data serves as the basis for the

estimation procedure. Assuming that the structure behaves in a linear fashion, each

of the recorded time histories can be represented as the sum of a finite number of
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significant damped sinusoidal components as follows:

Mjk

u;k(t) _- _jk(t) -- _ _4mjk cos(_mjk.t + O._jk)e-f"_J_'_J kt
m=l

(1)

Zero time is assumed to occur at the end of the excitation process and at the

beginning of the free decay. The subscript d denotes damped frequency as defined

in Equation 2. The barred quantities are meant to represent the result of filtering

experimental data. In this work Prony's method of extracting damped sinusoidal

components was employed [18]. The particular implementation of this algorithm

[19] has been found to operate quite well in the presence of considerable noise. The

choice of the number of components in the time series model is done interactively

until the user feels a good fit has been obtained. Pre-test analysis using the prior

analytic model can serve as a guide to what frequency components may be expected

at each sensor due to each load condition. Non-linearities and noise will in some

sense be removed from the data in this process. One could of course employ the

actual time history data in the optimization procedure. This would remove the

necessity of making an assumption on the form of the time series model. ]t would

also allow the data recorded during the excitation process to be fit to the analytic

structural model. However, the computational burden is greatly increased by having

to filter the data literally thousands of times during the optimization process. The

insight gained through the estimated Prony model components will also be lost.

The linear analytic model is formed as a function of the variable parameter set

D. This model will also predict response at the sensors in the form of damped

sinusoids. The response will be at the N damped natural frequencies of the system

which are given in terms of the undamped natural frequencies a_,_ and the modal

damping ratios f,_ as follows:

(2)

The predicted response at each of the sensors j in each of the load conditions k as

a function of parameters D is thus

N

ujk(t;D) = _ A.jkcos(_v,_jkdt + O_jk)e--f'_JkW_J fl
n=l

(3)

We note that the amplitude, frequency, phase and damping ratio are all functions

of the design variables and that the amplitude and phase are also functions of the

excitations applied prior to time zero.
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The Bayesian estimation procedure requires an error residual set E which is

defined here as the root mean square difference between predicted and observed

response over the duration of the experiment T, i.e.

Ejk = iT _oT[ftjk(t) - ujk(t;D)] 2 dt (4)

Given the representation of both experimental and analytic response as sums of

damped sinusoids, this error functional can be written in closed form. The algebra

and the test process will be considerably simplified if the excitations applied to the

structure are simple static loads applied at the actuators and released at tim_ zero.

Assuming the structural model is described adequately by a set of N real normal

modes, {¢n}, the amplitude components in the damped sinusoidal representation
will be

r , .']" . _

A.jk = (5)
_,.dn

and the phase angles 0_i k will be identically zero. Using pre-test prodictions the

input into expected modes of interest could be maximized by choosing the force vec-

tors in proportion to modal response at the actuators. The number of independent

combinations of force vectors is limited to the number of actuators, and additional

modes may also be excited in each twang test. More load cases than actuators can

nevertheless be employed as this will merely over-determine the test. One might

hope that the phase components identified from the test, 0mjk, will also be iden-

tically zero. This will invariably not be the case. These phase components may

be discarded if their magnitude is small. Large measured phase components will

indicate a problem in the test procedure, errors in the Prony analysis, or perhaps
non-linearities in the test article.

2.1 Bayesian Estimation

The Bayesian estimation procedure may most easily be understood as the mini-

mization of a performance index represented as the weighted sum square of error

residuals between observed and predicted response plus a weighted sum square of

error residuals between prior and adjusted parameter values, as defined in Equa-

tion 6. One is thus seeking to minimize a combination of measurement error and

parameter error. If one weights measurements more heavily by assigning greater

confidence (i.e. a smaller variance) to them , the design will then tend to match

the measurements more strongly. If one weights one's initial estimates of the pa-

rameters more heavily by assigning them a smaller uncertainty then the adjusted

parameters will tend to move less from tile prior estimates.
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The observation weighting function may be a full matrix if separate measure-

ments are statistically correlated. The usual assumption is that the measurements

are uncorrelated, resulting in a diagonal observation weight matrix. The parameter

weighting matrix may also be full if the prior parameter estimates are correlated.

This situation will present itself when data sets are considered sequentially, with

the adjusted parameter set arising from one batch of data used as the prior model

for the next batch. The prior model for the subsequent estimations will then usu-

ally exhibit a full covariance matrix. Allowing for the full statistical correlation of

both measurements and parameters the problem is defined: Find that D _ which

minimizes the performance index

T(D) - E(D)TW_E(D) + (D- D°)TWD,,(D--D °) (6)

The subscript e denotes experimental data and the superscript o denotes original

or prior parameter estimate. The weighting matrices W are the inverse of the

covariance matrices S. Thus the larger the uncertainty in a given measurement or a

given parameter estimate, the smaller will be its assigned weight in the estimation

procedure. The test covariance S_ and the prior parameter covariance SD,, are

usually assumed to be diagonal matrices with diagonal elements equal to the square

of the standard deviation of the measurement or parameter in question. Thus the

weight assigned will be Wii = 1/a 2 where a is the standard deviation. The covariance

of the final best fit parameter estimate will be

SD. : [WD,, @ TTWeT] -1 : [SD!,-4- TTS[1T] -1 (7)

In this case, T is a sensitivity matrix representing the rate of change of the error

residuals with respect to the variable parameter set, i.e.

0El
T-

0D D-

The sensitivities must be evaluated for the optimum parameter set. The standard

deviation of an improved estimated parameter can be derived from the diagonal

elements of the covariance matrix as follows: aD, = _/SDL.

A useful feature of the Bayesian approach is its ability to provide variance,

or uncertainty, estimates of modal parameters such as frequency or mode shape

[201 . The uncertainty bounds placed on the initial parameter estimates and the

measurement data were propagated through the estimation procedure to provide

uncertainties on the estimated parameter set as given in Equation 7. The optimum

estimated parameter set D _ can in turn be used to provide estimates of expected
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response quantities and their uncertainties. These expected response quantities will

be obtained by evaluating the system's describing equations using the estimated

parameter set. For example, expected natural frequencies, w_, and mode shapes,

{¢n}*, may be derived by performing an eigensolution on the matrix equations of

motion using the optimum parameter set. Variance estimates may be obtained using

the sensitivities of the response quantities in question with respect to parameters

its varianceevaluated at the optimum. Using natural frequency as an example,
would be:

S_, = -_ [So.] OD J (s)

The ability to predict a range of natural frequencies due to uncertainties in model

parameters could prove beneficial, especially in the design of control systems for

on-orbit structures which cannot be fully tested on the ground.

2.2 Approximation Concepts

The ability to match the response of the structural model to the measured test data

hinges on one's ability to efficiently compute the response for a large number of var-

ied parameter combinations. Simply performing a complete eigensolution at each

design iteration becomes excessively costly for all but the smallest systems. The

approximation concepts approach [51 which has evolved in the structural optimiza-

tion field solves the problem by defining an approximate problem based on solution

of one structural eigenproblem, which is then submitted to the optimization process

(see Figure 1). Having an optimum design (parameter set) for the approximate

problem, the structure is re-analyzed, and the process continues until the approxi-

mate problem, and hence the design, converges. The number of complete structural

analyses is thus minimized. The key to implementation is the construction of a

highly accurate approximate problem.

In this work, the natural frequencies and mode shapes were modeled as ap-

proximate functions of the design variables using analytic gradient infromation.

Eigenvector derivative calculations are the most costly portion of the design pro-

cess. Nelson's method [21] was implemented here using over 200 lines of Direct

Matrix Abstraction Programming (DMAP) [7]. This is the most efficient of the

exact methods, but it still requires a full matrix decomposition for each eigenvector

and a back-substitution for each design parameter. Given approximate eigenvalue

and eigenvector functional relationships, £_,_(D) and {¢,(D)}, respectively, the ob-

jective function T was computed in closed form for all design perturbations. The

objective function has a complex algebraic form, which makes computation of its
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sensitivities by finite difference attractive from both computational and program-

ming standpoints. The objective is also a highly non-linear function of frequency

and mode shapes, so use of a quasi-linear approximation would degrade the approx-

imate problem. The convoluted first order Taylor series expansion, derived by Woo

[6], is used to approximate the eigen-parameters. This approximation, for any given

function f, is

f(D) _ f(D) =- f(Do) + V f(Do)(D- Do) (_o) v (9)

The choice of the parameter p is obviously important in determining the character of

the approximation. A choice of p = 0 is simply a linear Taylor series approximation.

A choice of p = -1 turns out to be the same as linear Taylor series with respect to

reciprocal design variables 1/Di. Schmit first proposed reciprocal design variables

as providing a high-quality linearization of structural response quantities. Choosing

the sign of p as shown below results in an approximation which consistently either

under-predicts or over-predicts a linear approximation.

-sign(V f) ; underpredictorsign(p) = +sign(V f) ; overpredictor

Choosing the sign of p in this fashion one can guarantee conservativism in the design

process, always over-predicting response and under-predicting stiffness. Woo has

shown that an approximate problem may be constructed which is always convex,

possessing no local minima, and with the attendant increases in efficiency to be

gained using optimizers tailored to convex problems.

This is not our intent here. The parameter identification process is not one

of conservatism, but o_ making a best estimate. The value of p chosen here in the

extrapolation of eigenvalues was thus chosen to reflect the general law of diminishing

returns (under-prediction vis-a-vis a linear extrapolation) and to fall somewhere
1 • 2

between the linear and reciprocal variable assumptions. The value p = - _slgn(V%_)

was found to accelerate the convergence of the approximate problems quite well. A

value of p = 0 was used for eigenvector extrapolation as it is not at all clear whether

one should over or under predict mode shape quantities.
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3 Simulation Results

A simple ten-bar truss structure as shown in Figure 2 was chosen to test the per-

formance of the estimation procedure. This structure was chosen to represent an

optical pointer in some sense. The motions of the top element, axial, lateral and

rotational, are taken to represent optical sensors. An attempt to perform parameter

identification using just these sensors was made. An initial design was chosen to

represent an analysts best estimate of the structure's characteristics. This design

was perturbed to obtain a baseline design which represents the actual structure

in the field. The baseline structure was excited and it's Prony characteristics were

identified. Using the initial design as a starting point, the estimation procedure was

used to match the response of the model to the "measured" response of the baseline

model. The estimated parameter set was found to be significantly closer to the

baseline parameter set for parameters which had response sensitivity. Parameters

which did not produce significant response sensitivity were found to move in the

right direction slightly. ]t may be noted that the difference from the baseline of all

parameters was well within the final estimate of their standard deviations. Thus

some parameters' estimates were significantly improved, while none were degraded.

The initial design was chosen such that all members had the same area of 0.1

in 2. Damping ratios in the lowest six modes were assumed to be 1%. The baseline

model was then constructed by perturbing the initial design as follows: upper legs

were decreased 10% in area, lower legs increased 20%, diagonals increased 10%

and horizontals decreased 40%; damping in the first lateral mode remained at 1%,

damping in the first axial and second lateral modes was increased to 1.5% and

damping in higher modes was increased to 2%. Parameter values for the initial, the

perturbed baseline and the final estimated designs are presented in Table 1. Initial

assumed standard deviations and final estimated standard deviations are also given.

The initial standard deviations were arrived at by assuming stiffness estimates were

accurate to ±40% and damping estimates were accurate to only ±400%.

Two separate "twang tests" were run on the perturbed model by applying and

suddenly releasing 1,000 pound axial and lateral forces on the top element. Time

histories of axial and lateral displacement and rotational response were recorded at

the top of the truss. Axial motions were found to be de-coupled from lateral and

rotational motions. The Prony components identified from the simulated tests are

summarized in Table 2. The first axial and lateral modes were the only strong signals

in the time histories, causing the parameter estimation process to be dominated

by matching these components. The second and third lateral modes were clearly

identified but had such small amplitudes that the estimation process all but ignored
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Figure 2: Ten Bar Truss Model

their presence. The Prony analyzer did not always identify the exact damping ratio

as may be seen in the second component of measurement 2 which should have

had s" = 1.SVc.. The higher than actual damping estimate was compensated for

by the estimation of an amplitude greater than actual. The resultant integral of

amplitude over the 2 second duration of the experiment was thus similar. The phase

components of the identified signals were close enough to zero or 7c that they were

ignored.

The three measurements were assigned initial standard deviations of approxi-

mately 5% of their peak values. The initial RMS error residuals and the final RMS

error residuals for the estimated model are given in Table 3. The parameter es-

timation process came very close to eliminating the errors between observed and

predicted response. A comparison of baseline, initial and estimated modal frequen-

cies is given in Table 4. The first axial and lateral modes were matched quite well in

frequency to the baseline. Their standard deviations were also reduced significantly.

The second and third lateral modes, which were weakly present in the signals due

to the lateral load case, were not estimated as strongly. As was seen in Table 1, the

damping ratios for these weakly present modes were not estimated strongly either.
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Table 1" Initial, Baseline and Estimated Parameter Sets for Ten Bar Truss

Initial Baseline Estimated Initial Estimated

Parameter Description Design Design Design OD,, OD.

A1 (in 2)

As

A3

A4

A5

A6

;1 (%)
;z

;3

_4+

Upper Legs

Upper Horiz.

Lower Legs

Lower Horiz.

Upper Diags.

Lower Diags.

1st Lateral

2nd Lateral

1st Axial

Higher Modes

.1

.1

.1

.1

.1

.1

1.0

1.0

1.0

1.0

.08

.06

.12

.06

.11

.11

1.0

1.5

1.5

2.0

.0756

.0975

.1245

.0652

.1023

.1001

1.0005

1.175

1.537

1.024

.04

.04

.04

.04

.04

.04

4.0

4.0

4.0

4.0

.0332

.0400

.0244

.0287

.0342

.0328

2.58

3.88

3.96

3.99

The optimization process converged in four NASTRAN finite element analyses.

An iteration history of frequencies in the first axial and lateral modes is given in

Table 5. The frequencies actually computed in the FEM analyzer are contrasted

with those predicted from the previous iteration by the convoluted Taylor series.

Also shown are the portions of the objective function T due to the measurement

error residuals and that due to the deviation of the parameter estimates from the

initial parameter values. These are the square root of the first term in Equation 6

(measurement error) and the square root of the second term (parameter error).

Note that the parameter error does not involve prediction error and hence is not

extrapolated using convoluted Taylor series. Measurement error is an implicit func-

tion of modal quantities and hence it is also extrapolated indirectly. Note that the

measurement errors were not predicted nearly as well as the frequencies. This is

due to the non-linear nature of the objective. A small frequency or phase shift

can produce large differences in error residuals. In any case, convergence to the

optimum in only four finite element analyses must be considered extraordinary.
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Table 2: Identified Prony Components
Time Sensor Load Frequency Damping Phase

History Case Amplitude (Hz) % (Radians)

1 Axial (in) Axial .03149 15.292 1.521 -3.03

2 Lateral

(in)

Rotation

(rad)

Lateral

Lateral

.063791

.0041

.000886

.008759

.000360

1.000260

3.664

12.67

26.267

3.664

12.655

26.245

1.002

3.475

2.54

1.002

1.224

1.978

.0142

.1255

.169

.0148

.0961

-2.975

Table 3: RMS Error Residuals
Time

History

1

2

3

Initial

Error

.00685

.4547

.00595

Final

Error

.000192

.00232

.000189

Improvement

%
97.2

99.5

96.8

Table 4: Mode

Mode

l
I
I Description

1 4 1st Lateral
t

2 i 2nd Lateral

3 1st Axial

4 I 3rd Lateral

Initial

Design

3.448

12.49

15.09

26.60

Frequencies in Hz
Baseline

Design

3.664

12.67

15.31

26.25

Estimated

] Design
I 3.663

12.21

15.30

I 25.39

Estimated

O*

0.142

1.242

0.102

2.778
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Table 5: Iteration History

FEM Computation Lateral Axial Measurement Parameter

Analysis Type Frequency Frequency Error Error

1 Actual 3.4479 12.492 19.78 0.0

2 Actual 3.6440 11.489 2.524 1.062

Convoluted 3.6615 11.432 .6676

3 Actual 3.6563 12.125 .9369 1.238

Convoluted 3.6614 12.096 .5015

4 Actual 3.6631 12.206 .4067 1.240

Convoluted 3.6631 12.206 .4068

4 Conclusions

The parameter identification procedure outlined here has been shown to work quite

well on a small test case. A limited amount of displacement data was used to back

out physical parameters which one might not expect to be identifiable. Use of accel-

eration data would be expected to be more beneficial as it would allow higher modes

than the first to be identified strongly, thus providing more data to the estimation

procedure. Application to larger models and actual test data is in progress. It is

expected that the largest difficulties will arise in three areas. First is the Prony

process itself. Problems in separating closely spaced modes have been encountered.

Close modes somelimes appear as one mode with a higher or lower damping ratio

than is actually present. Sorting actual modes from noise modes is also a difficulty.

The second problem is computation time for the eigenvector derivatives. This may

be overcome using more approximate methods and by selective computation for

only those modes contributing heavily to response. The third difficulty is encoun-

tered by the analyst in choosing an appropriate model of the system and in choosing

the appropriate parameters in that model to vary. The appropriate parameters in

this simulated test case were self-evident. Experience will certainly be the major

determinant in solving this last problem.

The time domain estimation procedure is applicable to forcing functions other

than step functions. However computation of amplitude and phase would be consid-

erably more difficult for more complex force time histories. Impulse loading would

however be simple to analyze and would excite higher modes more than twang tests.

The use of impulses should be explored as an alternative to twang tests.
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The use of a frequency domain procedure analogous to the current time do-

main procedure should also be explored. One could identify the poles and zeroes

of a structure excited by white noise using an Auto Regressive-Moving Average

(ARMA) time series model. Efficient lattice filter algorithms have been developed

to do this. The power spectral density of this measured model could be matched to

the PSD of the predicted model by integrating the square of the difference over the

frequency domain. The integration can be performed in closed form using residue

theory. This frequency domain scheme may be able to more strongly estimate

the higher frequency modes and thus extract more information about the physical

model.
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